Reactive oxygen species and the regulation of hyperproliferation in a colonial hydroid.

نویسندگان

  • Katherine L Harmata
  • Neil W Blackstone
چکیده

Colonies of Podocoryna carnea circulate gastrovascular fluid among polyps via tubelike stolons. At polyp-stolon junctions, mitochondrion-rich cells in part regulate this gastrovascular flow. During competition, colonies hyperproliferate nematocytes and stolons; nematocysts are discharged until one colony is killed. Hyperproliferation then ceases, and normal growth resumes. Here, competing colonies were treated with azide, which inhibits respiration and upregulates reactive oxygen species (ROS). After the cessation of competition, azide-treated colonies continued to hyperproliferate. In azide-treated competing colonies, however, mitochondrion-rich cells were found to produce similar amounts of ROS as those in untreated competing colonies. Subsequent experiments showed that both azide treatment and competition diminished the lumen widths at polyp-stolon junctions, where mitochondrion-rich cells are found. In competing colonies, these diminished widths may also diminish the metabolic demand on these cells, causing mitochondria to enter the resting state and emit more ROS. Indeed, results with two fluorescent probes show that mitochondrion-rich cells in competing colonies produce more ROS than those in noncompeting colonies. In sum, these results suggest that competition perturbs the usual activity of mitochondrion-rich cells, altering their redox state and increasing ROS formation. Via uncharacterized pathways, these ROS may contribute to hyperproliferation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy

Objective(s):  The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...

متن کامل

Role of Angiotensin II in Reactive Oxygen Species Production and Modulatory Role of Nitric Oxide (NO) in Vessel Responses to AngII in Acute Joint Inflammation in the Rabbit

Introduction: It has been approved that in most tissues NO production increases during acute inflammation and Angiotensin II has a role in production of reactive oxygen species (ROS). As regulation of joint blood flow (JBF) is important in this situation, this study was performed to investigate the interaction of local Ang II and ROS production and the modulatory role of NO on regulation of JBF...

متن کامل

نقش استرس اکسیداتیو در تکثیر بی‌رویه و مرگ سلولی

Abstract During normal cellular activities Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are produced. In addition to beneficial functions they play a critical role in cell death and prevent apoptosis. Every cell is equipped with an extensive antioxidant defense system to combat the excessive production of active radicals. Oxidative stress occurs with destruction of cellu...

متن کامل

Physiological characterization of stolon regression in a colonial hydroid.

As with many colonial animals, hydractiniid hydroids display a range of morphological variation. Sheet-like forms exhibit feeding polyps close together with short connecting stolons, whereas runner-like forms have more distant polyps and longer connecting stolons. These morphological patterns are thought to derive from rates of stolon growth and polyp formation. Here, stolon regression is ident...

متن کامل

Effect of Reactive Oxygen Species on Germination and Lipid Proxidation in Sunflower Seeds

Reactive oxygen species cause to release of dormancy in many plants such as sunflower seeds. This study investigated in order to evaluation role of reactive oxygen species germination and lipid proxidation in sunflower seeds. This study was performed in two separate experiments, each in a completely randomized design with factorial design with four replications.  In both experiments, uses from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological and biochemical zoology : PBZ

دوره 84 5  شماره 

صفحات  -

تاریخ انتشار 2011